Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fam Cancer ; 22(4): 481-486, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37316640

RESUMO

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is a rare, autosomal dominant tumor predisposition syndrome characterized by variable development of multiple skin and uterus leiomyomas and aggressive forms of renal cell carcinoma (RCC). Mutations in fumarate hydratase (FH), one of the proteins in homologous recombination repair, precede the development of HLRCC with high penetrance. Considering the risk of early metastasis of RCC, FH has been included in mutation screening panels. The identification of a pathogenic FH variant guides the screening for tumors in the carriers. However, variants of uncertain significance (VUS) are frequent findings, limiting the clinical value of the mutation screening. Here, we describe the associated phenotype and an in-depth, multi-step Bioinformatic evaluation of the germline FH c.199T > G (p.Tyr67 > Asp) variant segregated in an HLRCC family. Evidence for FH c.199T > G; (p.Tyr67Asp) pathogenicity includes the variant segregation with the disease in three affected family members, its absence in populational databases, and the deep evolutionary conservation of the Tyr67 residue. At the protein level, this residue substitution causes the loss of molecular bonds and ionic interactions, affecting molecular dynamics and protein stability. Considering ACMG/AMP criteria, we propose the reclassification of the FH c.199T > G; (p.Tyr67Asp) variant to "likely pathogenic". In addition, the in-depth, in silico approach used here allowed us to understand how and why FH c.199T > G; (p.Tyr67Asp) could cause HLRCC. This could help in clinical management decisions concerning the monitoring of unaffected family members having this variant.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Leiomiomatose , Síndromes Neoplásicas Hereditárias , Neoplasias Cutâneas , Neoplasias Uterinas , Feminino , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Fumarato Hidratase/genética , Neoplasias Renais/genética , Leiomiomatose/genética , Leiomiomatose/patologia , Síndromes Neoplásicas Hereditárias/diagnóstico , Neoplasias Cutâneas/patologia , Neoplasias Uterinas/patologia
2.
Acta Histochem ; 124(1): 151821, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34861601

RESUMO

The identification of the best reference gene is a critical step to evaluate the relative change in mRNA expression of a target gene by RT-qPCR. In this work, we evaluated nineteen genes of different functional classes using Real Time Human Reference Gene Panel (Roche Applied Sciences), to identify the internal housekeeping genes (HKGs) most suitable for gene expression normalization data in human cell lines. Normal cell lines CCD-19LU (lung fibroblast), HEK-293 (epithelial cell of embryonic kidney), WI-26 VA4 (lung fibroblast), and human cancer cells, BT-549 (breast cancer), Hs 578T (breast cancer), MACL-1 (breast cancer), HeLa (cervical carcinoma), U-87 MG (glioblastoma/astrocytoma), RKO-AS45-1 (colorectal carcinoma), and TOV-21G (ovarian adenocarcinoma) were cultivated according to manufacturer's protocol. Twelve candidate reference genes were commonly expressed in five cell lines (CCD-19Lu, HEK-293, RKO-AS45-1, TOV-21G, and U-87 MG). To verify the expression stability, we used the RefFinder web tool, which integrates data from the computational programs Normfinder, BestKeeper, geNorm, and the comparative Delta-Ct method. The ACTB was the most stable reference gene to the CCD-19Lu and HEK-293 cells. The best combination of HKGs for the RKO-AS45-1 and TOV-21G cell lines were B2M/GAPDH and PBGD/B2M, respectively. For the U-87 MG cells, GAPDH and IPO8 were the most suitable HKGs. Thus, our findings showed that it is crucial to use the right HKGs to precise normalize gene expression levels in cancer studies, once a suitable HKG for one cell type cannot be to the other.


Assuntos
Adenocarcinoma , Genes Essenciais , Genes Essenciais/genética , Células HEK293 , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência
3.
Oncol Lett ; 20(5): 158, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32934726

RESUMO

The epithelial-to-mesenchymal transition (EMT) is a phenomenon during which cancer epithelial cells undergo changes in plasticity and lose cell-cell adhesion with consequent remodeling of the extracellular matrix and development of mesenchymal characteristics. Long non-coding RNAs (lncRNAs) have been described as EMT modulation markers, becoming a promising target in the development of new therapies for cancer. The present study aimed to investigate the role of everolimus at 100 nM as inductor of the EMT phenomenon in cell lines derived from human breast (BT-549), colorectal (RKO-AS45-1) and ovary (TOV-21G) cancer. The integrity of cellular junctions was monitored using an in vitro model of epithelial resistance. The results demonstrated that the EMT genes ZEB1, TWIST1 and TGFB1 were differentially expressed in cells treated with everolimus compared with in untreated cells. lncRNA HOTAIR was upregulated post-treatment only in BT-549 cells compared with in untreated cells. After treatment with everolimus, the intensity of fluorescence of P-cadherin decreased, and that of fibronectin increased in RKO-AS45-1 and TOV-21G cells compared with control cells. The transepithelial electrical resistance at the RKO-AS45-1 monolayer treated with everolimus started to decrease at 48 h. The changes in the gene expression and epithelial resistance may confirm the role of everolimus in EMT.

4.
Oncol Lett ; 19(1): 359-367, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31897148

RESUMO

Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, with the presence of chemoresistance contributing to the poor prognosis. Heat Shock Proteins (HSPs) genes are activated in response to pathophysiological stress and serve a role in a variety of stages in carcinogenesis, acting primarily as anti-apoptotic agents and in chemotherapy resistance in a variety of tumor types. The current study evaluated the HSP gene expression profile in women with ovarian cancer (OC) and their correlation with clinical and pathological aspects of patients with OC. A total of 51 patients included in the current study were divided into four groups: Primary Epithelial Ovarian Cancer (EOC; n=14), metastatic EOC (n=11), ovarian serous cystadenoma (n=7) and no evidence of ovarian malignancy or control groups (n=19). RNA extraction and reverse transcription-quantitative (RT-q) PCR was then performed on the samples obtained. RT-qPCR was performed to compare TNF receptor associated protein 1 (TRAP1), heat shock protein family (HSP) HSPB1, HSPD1, HSPA1A and HSPA1L expression in primary and metastatic EOCs. TRAP1, HSPB1, HSPD1, HSPA1A and HSPA1L gene expression did not differ among groups. HSPA1A, HSPA1L and TRAP1 were revealed to be underexpressed in the primary and metastatic EOC groups, with HSPA1L exhibiting the lowest expression. TRAP1 expression was higher in tumors at stages I/II compared with those at stages III/IV. No correlation was exhibited between HSP expression and age, menarche, menopause, parity, period after menopause initiation, cytoreduction, CA-125 or overall and disease-free survival. HSPA1A was negatively correlated with the risk of mortality from OC. The results indicated that the downregulation of HSPA1A, HSPA1L and TRAP1 could be associated with the clinical prognostic features of women with EOC.

5.
Cancer Microenviron ; 11(1): 85-92, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29307001

RESUMO

Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, and the lack of chemoresistance biomarkers contributes to the poor prognosis. Cancer stem cells (CSC) have been investigated in EOC to understand its relationship with chemoresistance and recurrence. In this context, in vitro cultivation-models are important tools for CSC studies. MicroRNAs (miRNAs) play key roles in cancer, CSC regulation and apoptosis. Thus, this study aims to evaluate the tumorsphere model as CSC-enrichment method in EOC studies and investigate apoptosis-related miRNAs in tumorspheres-derived EOC cell lines. TOV-21G and SKOV-3 were cultured in monolayer and tumorspheres. Genetic profiles of cell lines were obtained using COSMIC database. CD24/CD44/CD146/CD177 and ALDH1 markers were evaluated in cell lines and tumorspheres-derived by flow cytometry. Eleven miRNAs were selected by in silico analysis for qPCR analysis. According to COSMIC, TOV-21G and SKOV-3 have eight and nine cancer-related mutations, respectively. TOV-21G showed a CD44+/high/CD24-/low/CD117-/low/CD146-/low/ALDH1low profile in both culture models; thus, no significant difference between cultivation models was identified. SKOV-3 showed a CD44+/high/CD24+/high/ CD117-/low/CD146-/low/ALDH1low profile in both culture models, although the tumorsphere model showed a significant increase in CD24+/high subpopulation (ovarian CSC-like). Among eleven miRNAs, we observed differences in miRNA expression between culture models. MiR-26a was overexpressed in TOV-21G tumorspheres, albeit downregulated in SKOV-3 tumorspheres. MiR-125b-5p, miR-17-5p and miR-221 was downregulated in tumorsphere model in both cell lines. Given that tumorsphere-derived SKOV-3 had a higher ratio of CD24+/high cells, we suggest that miR-26a, miR-125b-5p, miR-17-5p and miR-221 downregulation could be related to poor EOC prognosis.

6.
Exp Cell Res ; 363(2): 283-290, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29352988

RESUMO

The cancer stem cell (CSC) concept is currently employed to explain the mechanism of multidrug resistance that is implicated in the reduced efficacy of many chemotherapeutic agents, consequently leading to metastatic spread and disease relapse. We searched for potential predictive markers of doxorubicin (DOX) resistance in breast cancer stem cells (BCSCs) of the BT-549 human triple-negative breast cancer (TNBC) cell line classified as a claudin-low subtype. In this study, we show that BT-549 presents a BCSCs-like subset determined by a CD44+/high/CD24-/low/ALDH1+ phenotype. The CD44+/high/CD24-/low/ALDH+ BCSCs-like subset presented the downregulation of a majority of the genes analyzed (64 genes), and only 3 genes were upregulated after DOX treatment. Among the upregulated genes, MAPK3, PRKCZ and STAT3, STAT3 presented a higher level of upregulation in the DOX-treated CD44+/high/CD24-/low/ALDH+ BCSCs-like subset. The identification of biomarkers that predict antitumor responses is at the top of cancer research priorities. STAT3 was highlighted as a molecular signature in the CD44+/high/CD24-/low/ALDH1+ BCSCs-like subset obtained from the TNBC BT-549 cell line related to DOX resistance. A majority of the evaluated genes in the EGF pathway appear to be not associated with DOX resistance, as observed in the CD44+/high/CD24-/low/ALDH1+ BCSCs-like subset.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...